domingo, 25 de septiembre de 2011

La energía asociada a las reacciones químicas: reacciones endotérmicas y exotérmicas

Las reacciones exotérmicas y endotérmicas son reacciones químicas asociadas una variación de energía. Las exotérmicas son aquellas que desprenden calor. Las endotérmicas son las que absorben calor.
Las reacciones químicas, se entienden mejor desde un punto de vista energético. Toda reacción química implica la ruptura de uniones de la molécula reactiva y la formación de nuevas uniones para obtener los productos. La energía química radica, precisamente, en las uniones químicas.
¿Qué sucede con la energía durante una reacción química? Toda reacción química lleva asociada una variación de energía. Y esa variación es observable, podría manifestarse como energía luminosa, eléctrica, mecánica o como calor. Tengan en cuenta que cuando estudiamos un proceso químico desde un punto de vista energético, se suele considerar el conjunto de sustancias involucradas en la reacción como el sistema de estudio y el resto, el medio o entorno.

Reacciones exotérmicas y endotérmicas

La energía se conserva durante las reacciones químicas. En una reacción pueden considerarse dos fases diferenciadas: en primer lugar, los enlaces químicos de los reactivos se rompen, y luego se reordenan constituyendo nuevos enlaces. En esta operación se requiere cierta cantidad de energía, que será liberada si el enlace roto vuelve a formarse. Los enlaces químicos con alta energía se conocen como enlaces `fuertes', pues precisan un esfuerzo mayor para romperse. Si en el producto se forman enlaces más fuertes que los que se rompen en el reactivo, se libera energía en forma de calor, constituyendo una reacción exotérmica. En caso contrario, la energía es absorbida y la reacción se denomina endotérmica. Debido a que los enlaces fuertes se crean con más facilidad que los débiles, son más frecuentes las reacciones exotérmicas espontáneas; un ejemplo de ello es la combustión de los compuestos del carbono en el aire para producir CO2 y H2O, que tienen enlaces fuertes. Pero también se producen reacciones endotérmicas espontáneas, como la disolución de sal en agua.
Las reacciones endotérmicas suelen estar asociadas a la disociación de las moléculas. Esto último puede medirse por el incremento de la entropía del sistema. El efecto neto de la tendencia a formar enlaces fuertes y la tendencia de las moléculas e iones a disociarse se puede medir por el cambio en la energía libre del sistema. Todo cambio espontáneo a temperatura y presión constantes implica un incremento de la energía libre, acompañado de un aumento de la fuerza del enlace.
Una reacción química es el proceso en el que una o más sustancias se transforman en otras sustancias diferentes —los productos de la reacción. Un ejemplo de reacción química es la formación de óxido de hierro producida al reaccionar el oxígeno del aire con el hierro.
Los productos obtenidos a partir de ciertos tipos de reactivos dependen de las condiciones bajo las que se da la reacción química. No obstante, tras un estudio cuidadoso se comprueba que, aunque los productos pueden variar según cambien las condiciones, determinadas cantidades permanecen constantes en cualquier reacción química. Estas cantidades constantes, que reciben el nombre de magnitudes conservadas, incluyen el número de cada tipo de átomo presente, la carga eléctrica y la masa total.
En algunos casos, como en la combustión, las reacciones se producen de forma rápida. Otras reacciones, como la oxidación, tienen lugar con lentitud. La cinética química, que estudia la velocidad de las reacciones, contempla tres condiciones que deben darse a nivel molecular para que tenga lugar una reacción química: las moléculas deben colisionar, han de estar situadas de modo que los grupos que van a reaccionar se encuentren juntos en un estado de transición entre los reactivos y los productos, y la colisión debe tener energía suficiente para crear el estado de transición y transformarlo en productos.
Las reacciones rápidas se dan cuando estas tres condiciones se cumplen con facilidad. Sin embargo, si uno de los factores presenta cierta dificultad, la reacción resulta especialmente lenta.
La velocidad de la reacción aumenta en presencia de un catalizador, una sustancia que no resulta alterada o se regenera, por lo que el proceso continúa. La mezcla de gases hidrógeno y oxígeno a temperatura ambiente no explota, pero si se añade platino en polvo la mezcla explosiona al cubrirse la superficie del platino con el oxígeno absorbido. Los átomos de platino alargan los enlaces de las moléculas de O2, debilitándolos y rebajando la energía de activación. Los átomos de oxígeno reaccionan rápidamente con moléculas de hidrógeno, colisionando contra ellas y formando agua y regenerando el catalizador. Las fases por las que pasa una reacción constituyen el `mecanismo de reacción'.
La velocidad de la reacción puede modificarse no sólo con catalizadores, sino también mediante cambios en la temperatura y en las concentraciones. Al elevar la temperatura se incrementa la velocidad a causa del aumento de la energía cinética de las moléculas de los reactivos, lo que provoca un mayor número de colisiones por segundo y hace posible la formación de estados de transición. Con el aumento de la concentración se consigue incrementar la velocidad de la reacción, al aumentar el número y la velocidad de las colisiones moleculares.


Energía o calor de reacción

Se llama energía de una reacción química a la energía absorbida o desprendida en la misma por el sistema reactivo.
El valor de la energía de reacción depende de las condiciones de presión y temperatura y de la cantidad de sustancia que se transforma. Los valores de la energía de reacción se expresan por mol de producto formado o reactivo gastado y, generalmente, en condiciones normales: 1 atm y 298 K (25 °C). Se conoce como calor de reacción, ya que se manifiesta de esta forma.


Energéticamente las reacciones pueden ser exotérmicas y endotérmicas

En las reacciones endotérmicas, los productos tienen mayor energía que los reactivos; por ello, debemos comunicar energía a la reacción. La reacción solo tendrá lugar mientras se le suministre dicha cantidad de energía; en el momento en el que no absorba tal cantidad de energía, la reacción se detendrá.
Así, por ejemplo, para descomponer el carbonato de calcio en óxido de calcio y dióxido de carbono se necesita aportar 187,3 kJ/mol. Si no se aporta dicha cantidad, el carbonato no se descompondrá.
En las reacciones exotérmicas, los productos tienen menos energía que los reactivos, por lo que se desprende energía.
Una de las típicas reacciones exotérmicas es la reacción de combustión del carbón según el proceso representado por la ecuación:

C (s) + O2 (g) → CO2 (g) - 395 kJ/mol

Es decir, la combustión de un mol de carbón, en estado sólido, desprende 395 kJ: el sistema reactivo ha perdido 395 kJ de energía química.
La obtención de energía de los alimentos es un proceso exotérmico. Los seres vivos necesitan energía, entre otras cosas para mantener la temperatura en los seres homeotermos. Esta energía la obtienen de la combustión química de los alimentos.
El contenido energético de un alimento, es decir, la cantidad de energía desprendida en su degradación, depende de su composición química.

Reacción exotérmica

Así, por ejemplo, en la reacción de combustión del butano necesitamos una pequeña chispa eléctrica para que la reacción comience; una vez iniciada la reacción, esta sigue produciéndose espontáneamente.
La presencia de un catalizador hace que la energía de activación de las reacciones disminuya, por lo que el número de choques eficaces aumenta y, por consiguiente, también aumenta su velocidad.


Energía de activación

Puede ocurrir que, en algunos casos, para que comience la reacción sea necesario un aporte de energía inicial denominada energía de activación.


INTRODUCCIÓN AL CONCEPTO DE VELOCIDAD DE REACCIÓN


Se define la velocidad v de una reacción, como la cantidad de reactivo que se consume, o la de producto que se forma, por unidad de volumen en la unidad de tiempo.
Dado que la cantidad de sustancia por unidad de volumen en una disolución, se denomina concentración, y teniendo en cuenta que, por lo general, tanto los reactivos como los productos se hallan en disolución, ya sea líquida, sólida o gaseosa, la velocidad de reacción representa la variación de concentración de una cualquiera de las sustancias que intervienen en la reacción por unidad de tiempo.
Para una reacción del tipo:
A + B ® C + D
donde A y B representan los reactivos y C y D los productos, la velocidad se puede expresar, recurriendo a la notación de incrementos, en la forma:
v = Δ[C]/Δt
y se mide en mol/l.s.
Recordando el significado de Δ/Δt como la rapidez con la que varía algo, la anterior expresión indica que v es, en efecto, la rapidez con la que varía (aumenta) la concentración ([ ]) del producto C con el tiempo. Junto con la anterior, son expresiones equivalentes de la velocidad:
v = -Δ[A]/Δt = -Δ[B]/Δt = Δ[D]/Δt
dado que, si la masa se mantiene constante, la velocidad con la que aparecen los productos tiene que ser igual a la velocidad con la que desaparecen los reactivos. El signo negativo se introduce para compensar el que corresponde a la disminución de la concentración de los reactivos; de este modo, el valor de la velocidad resulta igual y positivo cualquiera que sea la sustancia A, B, C o D elegida.
Para una reacción como la de síntesis del yoduro de hidrógeno:
H2 + I2 ® 2Hl
por cada mol de hidrógeno molecular H2que se consume, se producen dos moles de yoduro de hidrógeno Hl; como ambos procesos se dan al mismo tiempo, la velocidad de aparición del producto es, en este caso, el doble de la de desaparición de uno cualquiera de los reactivos. La velocidad de reacción ha de ser única y viene dada por cualquiera de las ecuaciones siguientes:
v = -Δ[I2]/Δt = -Δ[H2]/Δt = Δ[HI]/2.Δt

No hay comentarios:

Publicar un comentario en la entrada