domingo, 16 de noviembre de 2014

La radiación solar: usos y aplicaciones

Los investigadores expertos o especializados en energía solar aseguran que este es el único recurso el cual está garantizado por los próximos 6.000 millones de años, es que el Sol es una fuente inagotable de calor y energía y si el hombre la aprovecha debidamente, la dependencia de los combustibles fósiles será historia. Pero para lograr un eficiente aprovechamiento de este recurso es necesario que se den a conocer públicamente los diferentes tipos de aplicación de la energía solar, es de vital importancia proseguir con el desarrollo de la capacitación, acumulación y distribución de este recurso, es que esta es la única forma de asegurar un futuro limpio y con un abastecimiento de necesidades prolongado.

Usos:
Cuando decimos que la aplicación de la energía solar es inminente no estamos mintiendo, actualmente son muchos los sistemas solares que se despliegan en el planeta, por supuesto, la mayoría de ellos están concentrados en regiones que están expuestas a mayores horas de Sol. Con pocos elementos podemos fabricar una cocina solar o una linterna de las mismas características, todo es cuestión de información y conocimiento; pero si debemos ser más explícitos, tenemos que señalar que la aplicación de energía solar más importante es la que se relaciona con la electricidad. Si recogemos de forma adecuada la radiación solar podemos obtener electricidad y así iluminar nuestra vivienda como dar funcionamiento a distintos electrodomésticos; la electricidad obtenida puede usarse de manera directa o bien ser almacenada en acumuladores para luego utilizarse en horas nocturnas o en días que carecen de la presencia del Sol. Esta aplicación de energía solar puede llevarse a cabo gracias a la existencia de los ya conocidos paneles solares, estos se perfilan hoy como la solución definitiva al problema de electrificación rural. Los mismos cuentan con partes móviles, no contaminan ni producen ruido, son inalterables con el correr de los años, no consumen combustible alguno y no necesitan de tareas de mantenimiento; los más tecnológicos son capaces de captar la radiación solar en los días nublados, pero estos son ya mucho más costosos que los paneles convencionales.
Con respecto a los sistemas de calefacción, decimos que el calor se obtiene de los colectores térmicos, es que el calor recogido allí puede destinarse a satisfacer más de una necesidad, por ejemplo, podemos obtener agua caliente para consumo industrial o doméstico o bien para climatizar diferentes dependencias (hoteles, colegios, hogares, etc). También, aunque pueda resultar un poco extraño, la nueva aplicación de la energía solar se relaciona con la refrigeración cuando más soleamiento hay. ¿Cómo se logra esto?, mediante un foco cálido el cual puede tener origen en colectores solares instalados en el tejado; para aquellos descreídos, comentamos que en algunos países árabes ya se utilizan los aires acondicionados solares con un gran éxito. Para poder expandir los usos de este recurso en necesario conseguir un abaratamiento de costos, es decir, lograr una disminución del precio de las celdas solares para poder así incentivar la fabricación de paneles solares a gran escala, se estima que si esto sucede, una buena parte de la electricidad consumida en las naciones ricas en Sol, tenga su origen en la conversión fotovoltaica.

Otros usosAdemás de la obtención de calor y electricidad, existen diversas aplicaciones de la energía solar, entre ellas podemos nombrar: calentamiento de agua, destilación, evaporación, control de heladas y fotosíntesis. Se han ensayado todos los usos de la energía solar en escala de laboratorio pero no en escala industrial, esto se debe a que en ocasiones, el costo de dichas operaciones no pueden competir con el costo de otras fuentes de energía por la gran inversión inicial que debe realizarse. La aplicación de la energía solar sigue siendo todavía material de estudio, aunque hemos enumerado más de un beneficio que podemos obtener utilizándola, los técnicos y científicos aseguran que la misma puede brindarnos aún mucho más. Actualmente, para llevar a cabo tareas de investigación, varios países subvencionan a sus industrias, el objetivo es justamente podemos obtener mayores usos que hasta hora son desconocidos.

Efecto Invernadero

El efecto invernadero


¿Por qué se produce el efecto invernadero?


El ciclo formado por los puntos B y C, es el responsable del aumento en la temperatura de las capas más cercanas a la superficie terrestre.

El efecto invernadero se origina porque la energía que llega del sol, al proceder de un cuerpo de muy elevada temperatura, está formada por ondas de frecuencias altas que traspasan la atmósfera con gran facilidad. A su vez, la energía remitida hacia el exterior, desde la Tierra, al proceder de un cuerpo mucho más frío, está en forma de ondas de frecuencias más bajas, y es absorbida por los gases con efecto invernadero.

Esta retención de la energía hace que la temperatura sea más alta, aunque hay que entender bien que, al final, en condiciones normales, es igual la cantidad de energía que llega a la Tierra que la que esta emite. Si no fuera así, la temperatura de nuestro planeta habría ido aumentando continuamente, cosa que, por fortuna, no ha sucedido. 

Podríamos decir, de una forma muy simplificada, que el efecto invernadero lo que hace es provocar que la energía que llega a la Tierra sea "devuelta" más lentamente, por lo que es "mantenida" más tiempo junto a la superficie y así se mantiene la elevación de temperatura.

¿Qué es el Efecto Invernadero?

En la ausencia de una atmósfera, la temperatura superficial sería aproximadamente -18 °C . Esta es conocida como la temperatura efectiva de radiación terrestre. De hecho la temperatura superficial terrestre, es de aproximadamente 15°C.
La razón de esta discrepancia de temperatura, es que la atmósfera es casi transparente a la radiación de onda corta, pero absorbe la mayor parte de la radiación de onda larga emitida por la superficie terrestre.
Varios componentes atmosféricos, tales como el vapor de agua, el dióxido de carbono, tienen frecuencias moleculares vibratorias en el rango espectral de la radiación emitida por la Tierra. Estos gases de efecto invernadero absorben y reemiten la radiación en onda larga, devolviéndola a la superficie terrestre, causando el aumento de temperatura, fenómeno denominado Efecto Invernadero.




El vidrio de un invernadero similar a la atmósfera es transparente a la luz solar y opaca a la radiación terrestre, pero confina el aire a su interior, evitando que se pueda escapar el aire caliente (McIlveen, 1986; Anderson et al, 1987). Por lo tanto, el proceso que hace que un invernadero se caliente es diferente y el nombre engaña. El interior de un invernadero se mantiene tibio porque el vidrio inhibe la pérdida de calor por convección hacia el aire exterior, en resumen, no deja salir el aire caliente. En cambio el fenómeno atmosférico se basa en un proceso distinto al de un invernadero donde un gas absorbe el calor por su estructura molecular. En todo caso el término se ha popularizado tanto, que ya no hay forma de establecer un nombre más preciso.
En todo caso, el efecto invernadero es el motivo del calentamiento global y el cambio climático, es el aumento de los gases invernadero lo que aumenta la absorción de calor y a su vez genera los cambios. El aumento de los gases es resultado del uso y abuso de los recursos naturales, sea a través de quema ineficiente de combustibles fósiles, a través de la tala y destrucción de los bosques y ambientes naturales o la destrucción de ecosistemas marinos y acuáticos a través de la contaminación irracional e irresponsable.

Gases con efecto invernadero


Acción relativa
Contribución real
CO2
1 (referencia)
76 %
CFCs
15.000
5 %
Metano CH4
25
13 %
Óxido Nitroso N2O
230
6 %
 
La Energía Solar en la Tierra

Efecto del sol en la Tierra

La energía del Sol es muy importante para la Tierra. El Sol calienta nuestro planeta, calentando la superficie y la atmósfera. Esta energía dicta nuestros estados del tiempo. Nuestro clima es afectado en gran medida por la radiación solar que recibe la Tierra. Esta cantidad cambia dependiendo del albedo de la Tierra, que es la cantidad de radiación que reflejan la superficie de la Tierra y las nubes de vuelta al espacio.
La cantidad de radiación emitida por el Sol cambia con manifestaciones de la actividad solar como llamaradas solares o manchas solares. Se sabe que la actividad solar varia en ciclos, como el ciclo de 11 años de las manchas solares (y ciclos más largos). Algunos científicos se han preguntado si los cambios en nuestros estados del tiempo y clima podrían estar ligados con los ciclos solares cortos o de largo plazo. Por décadas, este ha sido un campo de investigación . Es un ejemplo del proceso científico .

Algunos científicos intentaron encontrar una relación entre los cambios de los estados del tiempo de la Tierra y la variabilidad solar. Aunque algunos científicos han indicado que existen tales correlaciones, estudios subsecuentes han indicado que estos resultados no son correctos. Los ejemplos incluyen estudios de la relación entre el número manchas solares y las variaciones en patrones del viento, o entre rayos cósmicos y nubes.

Otros estudios han investigado, con éxito relativo, la influencia de la variación solar sobre el clima de la Tierra. Los cambios en las manchas solares efectivamente alteran la cantidad de radiación del Sol, pero sólo un poco. Estos cambios son muy pequeños para ser responsables del calentamiento observado en la atmósfera durante la última mitad del vigésimo siglo. La única manera en que los modelos del clima pueden capturar el calentamiento observado en la atmósfera es mediante la adición de gases de invernadero.

Espectro electromagnético

Se denomina espectro electromagnético a la distribución energética del conjunto de las ondas electromagnéticas. Referido a un objeto se denomina espectro electromagnético o simplemente espectro a la radiación electromagnética que emite (espectro de emisión) o absorbe (espectro de absorción) una sustancia. Dicha radiación sirve para identificar la sustancia de manera análoga a una huella dactilar. Los espectros se pueden observar mediante espectroscopios que, además de permitir ver el espectro, permiten realizar medidas sobre el mismo, como son la longitud de onda, la frecuencia y la intensidad de la radiación.

El espectro electromagnético se extiende desde la radiación de menor longitud de onda, como los rayos gamma y los rayos X pasando por la luz ultravioleta, la luz visible y los rayos infrarrojos, hasta las ondas electromagnéticas de mayor longitud de onda, como son las ondas de radio. Se cree que el límite para la longitud de onda más pequeña posible es la longitud de Planck mientras que el límite máximo sería el tamaño del Universo, aunque formalmente el espectro electromagnético es infinito y continuo.

Transferencias de energía: radiación

La radiación consiste en la transmisión de calor en ausencia de materia. Por radiación nos llega la luz y el calor procedente del Sol, y es también la componente principal del calor que nos llega cuando nos calentamos junto a una hoguera o junto a una estufa eléctrica. La radiación está formada por ondas electromagnéticas diferentes, algunas de las cuáles son percibidas por el ojo y constituyen lo que llamamos luz visible, mientras que otras como las radiaciones infrarrojas y radiaciones ultravioletas no producen efectos sensoriales en el ojo humano. La radiación no es algo homogéneo sino que podemos considerarlo como la suma de muchas radiaciones diferentes. Eso se pone de manifiesto claramente al observar que hay luces de diferentes colores: todas son radiación,  pero la luz que produce la sensación de un color es diferente de la luz que produce la sensación de otro color. Desde un punto de vista científico se diferencia la luz de cada color por un número, que llamamos longitud de onda. El número que corresponde a la longitud de onda del color rojo es mayor que el número que corresponde a la longitud de onda del color amarillo, y éste a su vez, mayor que el que corresponde al color violeta.
Lo que llamamos radiaciones térmicas se diferencian de las llamadas radiaciones luminosas en que las longitudes de onda son mucho mayores en el caso de la radiaciones térmicas.
La radiación emitida por un cuerpo en la unidad de tiempo depende de la cuarta potencia de la temperatura de ese cuerpo, expresada en kelvin, así como de la superficie del cuerpo y de la emisividad (e), cuyo valor puede oscilar entre 0 y 1, siendo un valor propio de cada cuerpo que tiene relación con su color. Las superficies muy negras, como el hollín, tienen (e) próxima a 1, mientras que las superficies brillantes tienen e próxima a cero y en consecuencia, emitirán menos radiación. La piel tiene una emisividad elevada: alrededor de 0,6 la piel clara y de 0,8 la oscura.
Q= σA T4
σ es una constante universal de valor 5,67 10 J/m2.T4. Se le llama constante de Stefan-Boltzmann.
T la temperatura en grados Kelvin
A es la superficie del objeto

Las superficies brillantes no sólo emiten menos radiación sino que absorben sólo una pequeña parte de la radiación que incide sobre ellas. En cambio los cuerpos negros u oscuros absorben casi toda la radiación que incide sobre ellos. Por lo tanto, un buen absorbente es también un buen emisor. Cuando un cuerpo que está a temperatura T se coloca en un ambiente cuya temperatura es T emitirá y absorberá energía.

Se estima que la radiación constituye aproximadamente un 50% de las pérdidas de energía de una persona sedentaria en una habitación normal. El Sol emite una gran cantidad de radiación. Cada segundo emite 3,83 10 26 julios, lo que supera a toda la energía utilizada durante un año en la Tierra. Esa radiación se dispersa en todas las direcciones del espacio de forma que a la Tierra llega sólo una parte muy pequeña. Las medidas efectuadas fuera de la atmósfera ponen de manifiesto que a la Tierra llegan, cada segundo, 1353 julios sobre cada metro cuadrado. A la superficie terrestre llega menos, pues parte de esa radiación es reflejada por la atmósfera hacia el exterior y otra parte es absorbida por la propia atmósfera. Algunas propiedades de la radiación dependen de la longitud de onda. Por ejemplo. el vidrio o el plástico pueden ser transparentes para la radiación luminosa y opacos para la radiación térmica. Ese es el fundamento del llamado efecto invernadero que puede presentarse en muchos casos. En un invernadero llega radiación luminosa que atraviesa perfectamente el plástico que cubre el invernadero: esa radiación es absorbida por la tierra, el suelo y las plantas que, a su vez, emiten radiación térmica de mayor longitud de onda que la radiación luminosa. Ahora bien, la radiación térmica no puede atravesar el plástico, por lo que ha de quedar en el invernadero y como consecuencia aumenta la temperatura del mismo. Esto permite que la temperatura en el interior del invernadero sea superior a la que hay en el exterior. También la atmósfera puede dar lugar a un efecto invernadero. Hay sustancias que son «transparentes» a la radiación luminosa pero que son opacas a la radiación térmica. Un ejemplo es el dióxido de carbono. Si aumenta la proporción de dióxido de carbono en la atmósfera se dificultará la salida de la radiación térmica que emite la Tierra y eso dará lugar a una elevación de la temperatura.

domingo, 9 de noviembre de 2014

Calor y temperatura

Un cuerpo o una sustancia están formados por materia. Esta a su vez está formada por partículas que están en permanente movimiento. Cuanto más rápido se muevan, mayor será la temperatura del cuerpo o de la sustancia.
La temperatura es entonces, una variable de estado de la materia relacionada con la energía cinética promedio de sus partículas.
Conocer la temperatura de un cuerpo o una sustancia, así como también otras variables de estado como la presión, la densidad, el punto de ebullición, la resistencia eléctrica o la conductividad, aporta mayor información sobre sus propiedades físicas. Es importante remarcar entonces, que los cuerpos no tienen calor ni frío, sino una determinada temperatura que los caracteriza, y que si este parámetro varía, pueden modificarse algunas de sus propiedades.

Calor: entre mediados del siglo XVIII y las primeras décadas del siglo XIX las ideas científicas sobre el calor se manejaron bajo la teoría del calórico.
El calor era considerado como un fluido material, llamado calórico y que estaba en el interior de los cuerpos. Esta especie de sustancia capaz de pasar desde los cuerpos de mayor temperatura a los de menor temperatura, explicaba el enfriamiento de los cuerpos por pérdida del calórico, y calentamiento por su ganancia.
Las primeras críticas de la teoría del calórico, que ponen en duda la existencia de dicho fluido, surgen cuando en 1798 Benjamín Thompson (1753-1814), conde de Rumford y ministro de guerra de Baviera, observó que al taladrar grandes piezas de metal para fabricar cañones, se desprendían importantes cantidades de calor por frotamiento. El conde dudó de la existencia del calórico, pues si se trataba de una sustancia debería acabarse en algún momento de ese proceso de frotamiento, sin embargo esto no ocurría. 
Mucho tiempo después, las ideas del calórico como sustancia en movimiento fueron sustituidas por una nueva concepción científica, que plantearía la posibilidad de unificar los fenómenos mecánicos, luminosos, eléctricos, magnéticos, térmicos y químicos bajo el concepto de energía.

El calor como transferencia de energía

Todos los cuerpos o sistemas materiales tienen asociada una energía interna que permite conocer y caracterizar sus propiedades. El calor es una forma de transferencia de energía desde el cuerpo de mayor temperatura hacia el de menor temperatura. El calor no es un tipo de energía. Los cuerpos no tienen calor (ni frío).
Cuando ponemos en contacto dos cuerpos que están a diferente temperatura, sabemos que el cuerpo a más temperatura se enfría y el cuerpo a menos temperatura se calienta, hasta que las temperaturas se igualan. Se llega entonces a lo que se conoce como equilibrio térmico.
¿Qué ha ocurrido con la energía? Se ha producido una transferencia desde el cuerpo a mayor temperatura (pierde energía) hasta el cuerpo a menor temperatura (gana energía). Se dice que se ha transferido calor desde el primer cuerpo hasta el segundo.
La cantidad de energía intercambiada es el calor transferido. Sólo podremos hablar de calor mientras se éste produciendo el intercambio de energía. Los cuerpos no tenían calor antes ni tendrán calor después.
Los cuerpos no tienen frío o calor sino que poseen cierta energía interna que puede variar, por ejemplo cuando entran en contacto con otros cuerpos de diferentes temperaturas.

Signo de calor (Q)

Cuando un cuerpo gana energía por intercambio de calor, se dice que el calor es absorbido, y su signo es positivo (Q > 0).
Cuando un cuerpo pierde energía por intercambio de calor, se dice que el calor es desprendido, y su signo es negativo (Q < 0).

Unidades de calor: al ser una transferencia de energía, sus unidades son las mismas que las de cualquier energía (J, cal…).

Relación calor-incremento de temperatura

Al aportar calor a un cuerpo o extraer calor de éste, su temperatura cambia. El hecho de que cambie más o menos depende de varios factores:

Calor aportado o extraído: Q
Cantidad de sustancia (masa del cuerpo): m
Tipo de sustancia: esta influencia viene reflejada mediante una constante, llamada calor específico de la sustancia (Ce)

Calor específico de la sustancia, se define como la cantidad de energía que hay que aportar a 1 g de sustancia para que su temperatura aumente en 1ºC. Se medirá en cal/g.ºC o J/Kg.K

La expresión resultante es: Q= m. Ce.    t      -----à  Q= m. Ce. (Tf-Ti)

La caloría (cal) se define como la cantidad de calor necesario para que un gramo de agua pura pase de 14,5ºC a 15,5ºC.

La relación entre los joules y las calorías es la siguiente: 1 cal = 4,18 J o bien
1J = 0,24 cal

sábado, 4 de octubre de 2014

Radiaciones ionizantes: efectos en la salud y medidas de protección

Datos y cifras
  • La radiación ionizante es un tipo de energía liberada por los átomos en forma de ondas electromagnéticas o partículas.
  • Las personas están expuestas a fuentes naturales de radiación ionizante, como el suelo, el agua o la vegetación, y a fuentes artificiales, tales como los rayos X y algunos dispositivos médicos.
  • Las radiaciones ionizantes tienen muchas aplicaciones beneficiosas en la medicina, la industria, la agricultura y la investigación.
  • A medida que aumenta el uso de las radiaciones ionizantes también lo hacen los posibles peligros para la salud si no se utilizan o contienen adecuadamente.
  • Cuando las dosis de radiación superan determinados niveles pueden tener efectos agudos en la salud, tales como quemaduras cutáneas o síndrome de irradiación aguda.
  • Las dosis bajas de radiación ionizante pueden aumentar el riesgo de efectos a largo plazo, tales como el cáncer.

¿Qué es la radiación ionizante?

La radiación ionizante es un tipo de energía liberada por los átomos en forma de ondas electromagnéticas (rayos gamma o rayos X) o partículas (partículas alfa y beta o neutrones). La desintegración espontánea de los átomos se denomina radiactividad, y la energía excedente emitida es una forma de radiación ionizante. Los elementos inestables que se desintegran y emiten radiación ionizante se denominan radionúclidos.

Cada radionúclido se caracteriza por el tipo de radiación que emite, la energía de la radiación y su semivida.

La actividad, utilizada como medida de la cantidad de un radionúclido, se expresa en una unidad llamada becquerel (Bq): un becquerel corresponde a una desintegración por segundo. La semivida es el tiempo necesario para que la actividad de un radionúclido disminuya por la desintegración a la mitad de su valor inicial. La semivida de un elemento radiactivo es el tiempo que tarda la mitad de sus átomos en desintegrarse, y puede variar desde una fracción de segundo a millones de años (por ejemplo, el yodo 131 tiene una semivida de 8 días mientras que el carbono 14 tiene una semivida de 5730 años).

Fuentes de radiación

Las personas están expuestas a la radiación natural a diario. La radiación natural proviene de muchas fuentes, como los más de 60 materiales radiactivos naturales presentes en el suelo, el agua y el aire. El radón es un gas natural que emana de las rocas y la tierra y es la principal fuente de radiación natural. Diariamente inhalamos e ingerimos radionúclidos presentes en el aire, los alimentos y el agua.

Asimismo, estamos expuestos a la radiación natural de los rayos cósmicos, especialmente a gran altura. Por término medio, el 80% de la dosis anual de radiación de fondo que recibe una persona procede de fuentes de radiación naturales, terrestres y cósmicas. Los niveles de la radiación de fondo varían debido a diferencias geológicas. En determinadas zonas la exposición puede ser más de 200 veces mayor que la media mundial.

La exposición humana a la radiación proviene también de fuentes artificiales que van desde la generación de energía nuclear hasta el uso médico de la radiación para fines diagnósticos o terapéuticos. Hoy día, las fuentes artificiales más comunes de radiación ionizante son los aparatos de rayos X y otros dispositivos médicos.

Tipos de exposición

La exposición a la radiación puede ser interna o externa, y puede tener lugar por diferentes vías.
La exposición interna a la radiación ionizante se produce cuando un radionúclido es inhalado, ingerido o entra de algún otro modo en el torrente sanguíneo (por ejemplo, inyecciones o heridas). La exposición interna cesa cuando el radionúclido se elimina del cuerpo, ya sea espontáneamente (por ejemplo, en los excrementos) o gracias a un tratamiento.
La contaminación externa se puede producir cuando el material radiactivo presente en el aire (polvo, líquidos, aerosoles) se deposita sobre la piel o la ropa. Generalmente, este tipo de material radiactivo puede eliminarse del organismo por simple lavado.
La exposición a la radiación ionizante también puede resultar de la irradiación externa (por ejemplo, la exposición médica a los rayos X). La irradiación externa se detiene cuando la fuente de radiación está blindada o la persona sale del campo de irradiación.

Efectos de las radiaciones ionizantes en la salud

El daño que causa la radiación en los órganos y tejidos depende de la dosis recibida, o dosis absorbida, que se expresa en una unidad llamada gray (Gy). El daño que puede producir una dosis absorbida depende del tipo de radiación y de la sensibilidad de los diferentes órganos y tejidos.
El sievert (Sv) es una unidad de dosis de radiación ponderada, también llamada dosis efectiva. Es una manera de medir la radiación ionizante en términos de su potencial para causar daño. El sievert tiene en cuenta el tipo de radiación y la sensibilidad de los tejidos y órganos. El sievert es una unidad muy grande, por lo que resulta más práctico utilizar unidades menores, como el milisievert (mSv) o el microsievert (μSv). Hay 1000 μSv en 1 mSv, y 1000 mSv en 1 Sv. Además de utilizarse para medir la cantidad de radiación (dosis), también es útil para expresar la velocidad a la que se entrega esta dosis (tasa de dosis), por ejemplo en μSv/hora o mSv/año.


Más allá de ciertos umbrales, la radiación puede afectar el funcionamiento de órganos y tejidos, y producir efectos agudos tales como enrojecimiento de la piel, caída del cabello, quemaduras por radiación o síndrome de irradiación aguda. Estos efectos son más intensos con dosis más altas y mayores tasas de dosis. Por ejemplo, la dosis liminar para el síndrome de irradiación aguda es de aproximadamente 1 Sv (1000 mSv).
Si la dosis es baja o se recibe a lo largo de un periodo amplio (tasa de dosis baja) hay más probabilidades de que las células dañadas se reparen con éxito. Aun así, pueden producirse efectos a largo plazo si el daño celular es reparado, pero incorpora errores, transformando una célula irradiada que todavía conserva su capacidad de división. Esa transformación puede producir cáncer pasados años o incluso decenios. No siempre se producen efectos de este tipo, pero la probabilidad de que ocurran es proporcional a la dosis de radiación. El riesgo es mayor para los niños y adolescentes, ya que son mucho más sensibles que los adultos a la exposición a la radiación.
Los estudios epidemiológicos de poblaciones expuestas a la radiación (sobrevivientes de la bomba atómica o pacientes sometidos a radioterapia) muestran un aumento significativo del riesgo de cáncer con dosis superiores a 100 mSv.

La radiación ionizante puede producir daños cerebrales en el feto tras la exposición prenatal aguda a dosis superiores a 100 mSv entre las 8 y las 15 semanas de gestación y a 200 mSv entre las semanas 16 y 25. Los estudios en humanos no han demostrado riesgo para el desarrollo del cerebro fetal con la exposición a la radiación antes de la semana 8 o después de la semana 25. Los estudios epidemiológicos indican que el riesgo de cáncer tras la exposición fetal a la radiación es similar al riesgo tras la exposición en la primera infancia.

Exposición a la radiación en emergencias nucleares

Durante los accidentes en plantas de energía nuclear puede liberarse material radiactivo al medio ambiente. Los radionúclidos más preocupantes para la salud humana son el yodo y el cesio.
Durante la respuesta a esas emergencias es probable que se produzca exposición ocupacional, interna o externa, de los rescatadores, del personal de primero auxilios y trabajadores de las centrales nucleares. Las dosis de radiación pueden ser suficientemente altas como para causar efectos agudos, tales como quemaduras en la piel o síndrome de irradiación aguda.
Quienes viven muy cerca de centrales nucleares pueden sufrir exposición externa a los radionúclidos presentes en una nube radiactiva o depositados en el suelo. También se pueden contaminar externamente por partículas radiactivas depositadas en la piel o la ropa. También puede haber exposición interna si los radionúclidos se inhalan, ingieren o introducen en heridas abiertas.
La población en general no es probable que se vea expuesta a dosis suficientemente altas para causar efectos agudos, pero sí a dosis bajas que podrían aumentar el riesgo de efectos a largo plazo, como el cáncer. El consumo de agua o alimentos contaminados contribuye a la exposición global a la radiación.
Si se libera yodo radiactivo en el medio ambiente y penetra en el organismo por inhalación o ingestión, se concentrará en el tiroides aumentando el riesgo de cáncer de tiroides. El riesgo de cáncer de tiroides es mayor en los niños que en los adultos, en particular en los menores de 5 años y en aquellos cuyas dietas son generalmente carentes en yodo.

Medidas de protección de la salud en las emergencias nucleares

Durante las emergencias nucleares pueden aplicarse medidas de protección de la salud pública para limitar la exposición a la radiación y sus riesgos para la salud.
En la fase inicial de las emergencias (primeras horas o días) deben aplicarse medidas protectoras urgentes para prevenir la exposición a la radiación, teniendo en cuenta las dosis previsibles que se pueden haber recibido en el corto plazo (por ejemplo, dosis efectiva en 2-7 días, dosis tiroidea en una semana). Las decisiones se basan en las condiciones de las centrales nucleares, la cantidad de radiactividad real o potencialmente liberada a la atmósfera, las condiciones meteorológicas (por ejemplo, velocidad y dirección del viento, precipitación) y otros factores. Las autoridades locales pueden anunciar medidas urgentes como la evacuación, el refugio bajo techo o la administración de yodo no radiactivo.
La evacuación es más eficaz cuando se utiliza como medida de precaución antes de una emisión a la atmósfera. El refugio bajo techo (por ejemplo, en casas, escuelas o edificios de oficinas) también puede reducir significativamente la exposición al material radiactivo liberado y dispersado.
La administración de yodo no radiactivo puede impedir la captación del yodo radiactivo por el tiroides. La toma de pastillas de yoduro de potasio antes o poco después de la exposición satura el tiroides de yodo y reduce la dosis de yodo radiactivo y el riesgo de cáncer de tiroides. Los comprimidos de yoduro de potasio no protegen de la radiación externa ni de otras sustancias radiactivas distintas del yodo.
Las pastillas de yoduro de potasio deben tomarse solo cuando así lo indiquen las autoridades competentes. Es importante seguir las recomendaciones de dosis, especialmente en los niños. Las embarazadas deben tomar pastillas de yoduro de potasio cuando así lo indiquen las autoridades competentes para proteger tanto su tiroides como el del feto. Cuando esté indicado, las mujeres lactantes también deben tomar pastillas de yoduro de potasio para protegerse a si mismas y proporcionar al lactante yoduro de potasio con leche materna.
Se pueden tomar medidas con respecto a los alimentos, el agua y la agricultura a fin de reducir la exposición a la radiación durante la fase inicial de una emergencia (por ejemplo, restricción del consumo de agua y de alimentos y lácteos de producción local).


El apoyo psicológico para paliar el estrés agudo tras un accidente nuclear puede acelerar la recuperación y evitar consecuencias a largo plazo, como el trastorno de estrés post-traumático u otros trastornos mentales persistentes. Las reacciones pueden ser intensas y prolongadas, y tener un impacto emocional profundo, sobre todo en los niños.
A medida que se vayan acumulando datos sobre la situación medioambiental y humana se pueden adoptar medidas de protección, como la reubicación de la población en viviendas temporales o, a veces, en reasentamientos permanentes. Estas medidas de protección se aplican teniendo en cuenta las dosis que puede recibir la población a largo plazo (por ejemplo, dosis efectiva a lo largo de un año). Deben establecerse programas de control de los alimentos y el agua para fundamentar decisiones a más largo plazo sobre la restricción de alimentos, el consumo de agua y el control del comercio internacional de productos alimentarios.
La fase de recuperación puede durar bastante tiempo. El cese de las medidas de protección debe vincularse a los datos del control medioambiental, de los alimentos y de la salud humana, y basarse en análisis de los riesgos y beneficios. Deben establecerse programas apropiados de seguimiento a largo plazo para evaluar las consecuencias para la salud pública y la necesidad de medidas posteriores.

Fuente: http://www.who.int/mediacentre/factsheets/fs371/es/

Aplicaciones tecnológicas de los radioisótopos y de las radiaciones

Las características particulares que presentan las sustancias radiactivas y las radiaciones hacen que se puedan emplear en una gran diversidad de campos y con distintos fines. Como ya vimos los radionucleidos emiten uno o más tipos de radiación, ya sean de naturaleza electromagnética ( X g ) o partícula ( e-,e+, n, a, p). Algunas de estas radiaciones también pueden ser producidas por máquinas como equipos de rayos X, aceleradores de partículas o reactores nucleares. Las radiaciones interactúan con la materia de distintas formas, por ejemplo: fotoeléctrica, efecto Compton y formación de pares, produciendo efectos que pueden utilizarse en varias aplicaciones.
Los radioisótopos son detectables, a través de las radiaciones que se emiten átomo por átomo. La sensibilidad de la detección y la magnitud de su medición dependen del tipo de radiación, de su energía y de su intensidad. Detectar y medir las radiaciones que emite una sustancia radiactiva significa detectar y medir la sustancia misma y eventualmente el sistema en que se halla.
Las radiaciones atraviesan los materiales e interactúan con ellos, hecho que se utiliza para estudiarlos o afectarlos de distintas maneras. El alcance y el modo de interacción dependen también del tipo de radiación, de su energía y de su intensidad, además de las propiedades del material. Pueden utilizarse tanto los efectos que las radiaciones producen en los materiales, como los efectos que los materiales provocan en las radiaciones.
http://caebis.cnea.gov.ar/IdEN/CONOC_LA_ENERGIA_NUCX/CAPITULO_5_Difusion/LA_TECNOLOGIA_NUCLEAR/Aplic_tecnol_de_rad_y_rad.htm

La Argentina exporta tecnología nuclear

Invap, una empresa argentina radicada en la provincia de Río Negro, ganó una licitación para instalar un reactor nuclear en Australia.

Trabajos finales sobre la chimenea del reactor OPAL exportado a Australia

El gobierno de Australia se propone construir un nuevo reactor nuclear que tendrá fines pacíficos, como producir algunas sustancias radiactivas utilizadas en medicina. Para la construcción de la obra, que requiere conocimientos muy específicos, se realizó un concurso en el que participaron las principales empresas del mundo especializadas en esta tecnología. Luego de un riguroso proceso de selección, resultó ganadora la empresa argentina Invap. Para nuestro país, obtener esta licitación significa confirmar el lugar de reconocimiento mundial adquirido en el área de construcción de reactores nucleares.

http://www.educ.ar/dinamico/UnidadHtml__get__849207e2-6161-45e6-ad65-bd8a94a128fd/91466/data/e3416c65-7a07-11e1-8226-ed15e3c494af/index.html

Reacciones controladas y espontáneas

La fisión nuclear controlada

Para mantener un control sostenido de reacción nuclear, por cada 2 o 3 neutrones puestos en libertad, sólo a uno se le debe permitir dar a otro núcleo de uranio. Si esta relación es inferior a uno entonces la reacción va a morir, y si es más grande va a crecer sin control (una explosión atómica). Para controlar la cantidad de neutrones libres en el espacio de reacción debe estar presente un elemento de absorción de neutrones. La mayoría de los reactores son controlados por medio de barras de control hechas de neutrones de un fuerte material absorbente, como el boro o el cadmio.
Además de la necesidad de capturar neutrones, los neutrones a menudo tienen mucha energía cinética (se mueven a gran velocidad). Estos neutrones rápidos se reducen a través del uso de un moderador, como el agua pesada y el agua corriente. Algunos reactores utilizan grafito como moderador, pero este diseño tiene varios problemas. Una vez que los neutrones rápidos se han desacelerado, son más propensos a producir más fisiones nucleares o ser absorbidos por las barra de control.
Fisión nuclear espontánea

En este tipo de reacciones no es necesaria la absorción de un neutrón exterior. En determinados isótopos del uranio, y sobre todo del plutonio, tienen una estructura atómica tan inestable que se fisiona espontáneamente.
La tasa de la fisión nuclear espontánea es la probabilidad por segundo que un átomo dado se fisione de forma espontánea - es decir, sin ninguna intervención externa. El plutonio 239 tiene una muy alta tasa de fisión espontánea en comparación con la tasa de fisión espontánea de uranio 235.

Fusión nuclear

La fusión nuclear es una reacción nuclear en la que dos núcleos de átomos ligeros, en general el hidrógeno y sus isótopos (deuterio y tritio), se unen para formar otro núcleo más pesado. Generalmente esta unión va acompañada con la emisión de partículas (en el caso de núcleos atómicos de deuterio se emite un neutrón). Esta reacción de fusión nuclear libera o absorbe una gran cantidad de energía en forma de rayos gamma y también de energía cinética de las partículas emitidas. Esta gran cantidad de energía permite a la materia entrar en estado de plasma.
Las reacciones de fusión nuclear pueden emitir o absorber energía. Si los núcleos que se van a fusionar tienen menor masa que el hierro se libera energía. Por el contrario, si los núcleos atómicos que se fusionan son más pesados que el hierro la reacción nuclear absorbe energía.
No confundir la fusión nuclear con la fusión del núcleo de un reactor, que se refiere a la fusión del núcleo del reactor de una central nuclear debido al sobrecalentamiento producido por la deficiente refrigeración. Durante el accidente nuclear de Fukushima, se utilizaba esta expresión frecuentemente.

Fusión nuclear en la naturaleza

Las estrellas, incluido el Sol, experimentan constantemente reacciones de fusión nuclear. La luz y el calor que percibimos del Sol es el resultado de estas reacciones nucleares de fusión: núcleos de hidrógeno chocan entre sí, y se fusionan dando lugar a un núcleo más pesado de helio liberando una enorme cantidad de energía. La energía liberada llega a la Tierra en forma de radiación electromagnética.
Las fuerzas de gravedad en el universo generan las condiciones perfectas para la fusión nuclear.
A las reacciones de fusión nuclear también se les llama reacciones termonucleares debido a las altas temperaturas que experimentan. En el interior del Sol, la temperatura es cercana a los 15 millones de grados Celsius.

Requisitos técnicos para la fusión nuclear

Para efectuar las reacciones de fusión nuclear, se deben cumplir los siguientes requisitos:
Conseguir una temperatura muy elevada para separar los electrones del núcleo y que éste se aproxime a otro venciendo las fuerzas de repulsión electrostáticas. La masa gaseosa compuesta por los electrones libres y los átomos altamente ionizados se denomina plasma.
Es necesario el confinamiento para mantener el plasma a temperatura elevada durante un mínimo de tiempo.
Densidad del plasma suficiente para que los núcleos estén cerca unos de otros y puedan generar reacciones de fusión nuclear.

Confinamiento para la fusión nuclear

Los confinamientos convencionales que se utilizan en los reactores nucleares de fisión no son posibles debido a las altas temperaturas del plasma que deben soportar. Por este motivo, se han desarrollado dos importantes métodos de confinamiento:

- Fusión nuclear por confinamiento inercial (FCI): Consiste en crear un medio tan denso que las partículas no tengan casi ninguna posibilidad de escapar sin chocar entre sí. Una pequeña esfera compuesta por deuterio y tritio es impactada por un haz de láser, provocándose su implosión. Así, se hace cientos de veces más densa y explosiona bajo los efectos de la reacción de fusión nuclear.
- Fusión nuclear por confinamiento magnético (FCM): Las partículas eléctricamente cargadas del plasma son atrapadas en un espacio reducido por la acción de un campo magnético. El dispositivo más desarrollado tiene forma toroidal y se denomina Tokamak.

Reacciones de fusión nuclear

Los elementos atómicos empleados normalmente en las reacciones fusión nuclear son el Hidrógeno y sus isótopos: el Deuterio (D) y el Tritio (T). Las reacciones de fusión más importantes son:
D + T -> 4He + n + 17,6 MeV 
Fusionando un núcleo de Deuterio con un núcleo de Tritio, se obtiene un núcleo de Helio formado por dos neutrones y dos protones, liberando 1 neutrón y 17,6 MeV de energía.
D + D -> 3He + n + 3,2 MeV
Fusionando dos núcleos de Deuterio,  se obtiene un núcleo de Helio formado por un neutrón y dos protones, liberando un neutrón y 3,2 MeV de energía.
D + D --> T + p + 4,03 MeV
Fusionando dos núcleos de Deuterio,  se obtiene un núcleo de Tritio, un protón y 4,03 MeV de energía.
Para que tengan lugar estas reacciones debe suministrarse a los núcleos la energía cinética necesaria para que se aproximen los núcleos reaccionantes, venciendo así las fuerzas de repulsión electrostáticas. Para ello se necesita calentar el gas hasta temperaturas muy elevadas, como las que se supone que tienen lugar en el centro de las estrellas.
El requisito de cualquier reactor de fusión nuclear es confinar dicho plasma con la temperatura y densidad lo bastante elevadas y durante el tiempo justo, a fin de permitir que ocurran suficientes reacciones de fusión nuclear, evitando que se escapen las partículas, para obtener una ganancia neta de energía. Esta ganancia energética depende de que la energía necesaria para calentar y confinar el plasma, sea menor que la energía liberada por las reacciones de fusión nuclear. En principio, por cada miligramo de deuterio-tritio se pueden obtener 335 MJ.

Combustible utilizado para las reacciones de fusión nuclear

Para las reacciones de fusión nuclear se necesitan núcleos ligeros. Básicamente se utilizan deuterio y Tritio, que son dos isótopos del hidrógeno.
El Deuterio es un isótopo estable del hidrógeno formado por un protón y un neutrón. Su abundancia en el agua es de un átomo por cada 6.500 átomos de hidrógeno. Esto supone que en el agua de mar hay una concentración de 34 gramos de deuterio por metro cúbico de agua. El contenido energético del deuterio es tan elevado que la energía que se puede obtener del deuterio de un litro de agua de mar es equivalente a la energía que se puede obtener de 250 litros de petróleo.
Por este motivo, teniendo en cuenta, que tres cuartas partes del Planeta están cubiertas por agua, se considera la fusión  nuclear cómo una fuente de energía inagotable.
El otro elemento empleado en la fusión nuclear, el Tritio, es el isótopo inestable o radiactivo del átomo de hidrógeno. Está compuesto por un protón y dos neutrones y se desintegra por emisión beta con relativa rapidez. Aunque el Tritio es escaso en la naturaleza, se puede generar por reacciones de captura neutrónica con los isótopos del Litio. El Litio es un material abundante en la corteza terrestre y en el agua del mar.

Fisión nuclear

Para poder obtener energía manipulando los núcleos de uno o varios átomos podemos hacerlo de dos formas distintas. Uniendo núcleos de átomos distintos (entonces hablamos de fusión nuclear) o partiendo núcleos de un determinado átomo (caso de la fisión nuclear)
En energía nuclear llamamos fisión nuclear a la división del núcleo de un átomo. El núcleo se convierte en diversos fragmentos con una masa casi igual a la mitad de la masa original más dos o tres neutrones.
La suma de las masas de estos fragmentos es menor que la masa original. Esta 'falta' de masas (alrededor del 0,1 por ciento de la masa original) se ha convertido en energía según la ecuación de Einstein (E=mc2). En esta ecuación E corresponde a la energía obtenida, m a la masa de la que hablamos y c es una constante, la de la velocidad de la luz: 299.792.458 m/s2.
La fisión nuclear puede ocurrir cuando un núcleo de un átomo pesado captura un neutrón (fisión inducida), o puede ocurrir espontáneamente debido a la inestabilidad del isotopo (fisión espontánea).
 
Reacción nuclear en cadena

Una reacción en cadena es un proceso mediante el cual los neutrones que se han liberado en una primera fisión nuclear producen una fisión adicional en al menos un núcleo más. Este núcleo, a su vez produce neutrones, y el proceso se repite.
Estas reacciones en cadena pueden ser controladas o incontroladas. Las reacciones controladas serían las reacciones nucleares producidas en centrales nucleares en que el objetivo es generar energía eléctrica de forma constante. Las reacciones nucleares incontroladas se dan en el caso de armas nucleares.

Si en cada fisión provocada por un neutrón   liberan dos neutrones más, entonces el número de fisiones se duplica en cada generación. En este caso, en 10 generaciones hay 1.024 fisiones y en 80 generaciones aproximadamente 6 x 1023 fisiones.

Masa crítica

La masa crítica es la cantidad mínima de material fisionable para que se mantenga una reacción nuclear en cadena.
Aunque en cada fisión nuclear  se producen entre dos y tres neutrones, no todos neutrones están disponibles para continuar con la reacción de fisión; algunos se pierden. Si los neutrones liberados por cada reacción nuclear se pierden a un ritmo más rápido de lo que se forman por la fisión, la reacción en cadena no será autosostenible y se detendrá.
La cantidad de masa crítica de un material fisionable depende de varios factores: propiedades físicas, propiedades nucleares, de su geometría y de su pureza.
Una esfera tiene la superficie mínima posible para una masa dada, y por tanto, reduce al mínimo la fuga de neutrones. Si además bordeamos el material fisionable con un reflector de neutrones se pierden muchos menos neutrones y se reduce la masa crítica.

Velocidad de reacción

La velocidad de reacción se define como la cantidad de sustancia que reacciona por unidad de tiempo. Por ejemplo, la oxidación del hierro bajo condiciones atmosféricas es una reacción lenta que puede tomar muchos años,[pero la combustión del butano en un fuego es una reacción que sucede en fracciones de segundo.
Se define la velocidad de una reacción química como la cantidad de sustancia formada (si tomamos como referencia un producto) o transformada (si tomamos como referencia un reactivo) por unidad de tiempo.
La velocidad de reacción no es constante. Al principio, cuando la concentración de reactivos es mayor, también es mayor la probabilidad de que se den choques entre las moléculas de reactivo, y la velocidad es mayor. a medida que la reacción avanza, al ir disminuyendo la concentración de los reactivos, disminuye la probabilidad de choques y con ella la velocidad de la reacción. La medida de la velocidad de reacción implica la medida de la concentración de uno de los reactivos o productos a lo largo del tiempo, esto es, para medir la velocidad de una reacción necesitamos medir, bien la cantidad de reactivo que desaparece por unidad de tiempo, bien la cantidad de producto que aparece por unidad de tiempo. La velocidad de reacción se mide en unidades de concentración/tiempo, esto es, en moles/s.

La teoría de colisiones


La teoría de colisiones, propuesta hacia 1920 por Gilbert N. Lewis (1875-1946) y otros químicos, afirma que para que ocurra un cambio químico es necesario que las moléculas de la sustancia o sustancias iniciales entren en contacto mediante una colisión o choque.
Pero no todos los choques son iguales. El choque que provoca la reacción se denomina choque eficaz y debe cumplir estos dos requisitos:
  • Que el choque genere la suficiente energía para romper los enlaces entre los átomos.
  • Que el choque se realice con la orientación adecuada para formar la nueva molécula.
Los choques que no cumplen estas condiciones y, por tanto, no dan lugar a la reacción, se denominan choques ineficaces.
A veces, el paso de reactivo a producto se realiza mediante la formación de un compuesto intermedio o complejo activado que se transformará posteriormente en los productos.
La energía de activación ( ) en química es la energía que necesita un sistema antes de poder iniciar un determinado proceso. La energía de activación suele utilizarse para denominar la energía mínima necesaria para que se produzca una reacción química dada. Para que ocurra una reacción entre dos moléculas, éstas deben colisionar en la orientación correcta y poseer una cantidad de energía mínima.

Factores que afectan a la velocidad de una reacción química
 
¿De qué depende que una reacción sea rápida o lenta? ¿Cómo se puede modificar la velocidad de una reacción? Una reacción química se produce mediante colisiones eficaces entre las partículas de los reactivos, por tanto, es fácil deducir que aquellas situaciones o factores que aumenten el número de estas colisiones implicarán una mayor velocidad de reacción. Veamos algunos de estos factores.
Temperatura
Al aumentar la temperatura, también lo hace la velocidad a la que se mueven las partículas y, por tanto, aumentará el número de colisiones y la violencia de estas. El resultado es una mayor velocidad en la reacción. Se dice, de manera aproximada, que por cada 10 °C de aumento en la temperatura, la velocidad se duplica.
Esto explica por qué para evitar la putrefacción de los alimentos los metemos en la heladera o en el congelador. Por el contrario, si queremos cocinarlos, los introducimos en el horno o en una cazuela puesta al fuego.

Grado de pulverización de los reactivos
Si los reactivos están en estado líquido o sólido, la pulverización, es decir, la reducción a partículas de menor tamaño, aumenta enormemente la velocidad de reacción, ya que facilita el contacto entre los reactivos y, por tanto, la colisión entre las partículas.
Por ejemplo, el carbón arde más rápido cuanto más pequeños son los pedazos; y si está finamente pulverizado, arde tan rápido que provoca una explosión.

Naturaleza química de los reactivos que intervienen en la reacción
Dependiendo del tipo de reactivo que intervenga, una determinada reacción tendrá una energía de activación:
  • Muy alta, y entonces será muy lenta.
  • Muy baja, y entonces será muy rápida.
Así, por ejemplo, si tomamos como referencia la oxidación de los metales, la oxidación del sodio es muy rápida, la de la plata es muy lenta y la velocidad de la oxidación del hierro es intermedia entre las dos anteriores.

Concentración de los reactivos
Si los reactivos están en disolución o son gases encerrados en un recipiente, cuanto mayor sea su concentración, más alta será la velocidad de la reacción en la que participen, ya que, al haber más partículas en el mismo espacio, aumentará el número de colisiones.
El ataque que los ácidos realizan sobre algunos metales con desprendimiento de hidrógeno es un buen ejemplo, ya que este ataque es mucho más violento cuanto mayor es la concentración del ácido.
La variación de la velocidad de reacción con los reactivos se expresa, de manera general, en la forma:
v = k [A]α [B]β

Donde α y β son coeficientes que no coinciden necesariamente con los coeficientes estequiométricos de la reacción general antes considerados. La constante de velocidad k, depende de la temperatura.

Catalizadores
Los catalizadores son sustancias que facilitan la reacción modificando el mecanismo por el que se desarrolla. En ningún caso el catalizador provoca la reacción química; no varía su calor de reacción.
Los catalizadores se añaden en pequeñas cantidades y son muy específicos; es decir, cada catalizador sirve para unas determinadas reacciones. El catalizador se puede recuperar al final de la reacción, puesto que no es reactivo ni participa en la reacción.