jueves, 9 de noviembre de 2017

La energía del Sol y su influencia sobre la Tierra

El sol como fuente de Energía


Energía natural en la Tierra

Casi toda la energía que impulsa la vida, el tiempo, el clima y los procesos naturales en la superficie terrestre provienen del sol. La vida en la Tierra no sería posible sin él. Y esto no significa sólo la vida en la playa.
Sólo una diminuta fracción de la energía que tiene influencia en nuestro ambiente, se origina en la parte interior líquida de la Tierra. Esta energía, la cual está todavía presente desde la formación de nuestro planeta, es utilizada, por ejemplo, en compresores geotérmicos. Durante erupciones volcánicas la energía se muestra de una manera natural. El sistema del Clima y el cambio climático provocado por el hombre no tienen ninguna influencia en los procesos dentro de la Tierra, tampoco en erupciones volcánicas ni en terremotos. Si personas mueren debido a terremotos o  erupciones volcánicas, el cambio climático no es responsable de ello.

La radiación del Sol

El Sol transfiere su energía por medio de ondas electromagnéticas como la luz. Pero a menudo pensamos que la luz (que podemos ver con nuestros ojos) es la única parte de la radiación emitida por el sol.
Esta figura muestra el espectro original de la radiación solar idealizada (amarillo), en el tope superior de la atmósfera (naranja) y en la superficie terrestre después de ser modificada por la atmósfera (multicolor, negro). Las áreas negras representan la luz, que no es visible por nuestros ojos. La energía de la radiación disminuye de izquierda a derecha. © Wikimedia Creative Commons Lincence


El Sol también transfiere energía aún más energética que la luz visible, como la radiación ultra violeta (UV). Demasiada luz UV daña las células de plantas, de humanos y de animales. Afortunadamente, la capa de ozono en una altitud de 15-40 km absorbe una importante fracción de esta radiación sumamente energética y peligrosa.

El Sol también emite la radiación térmica con una energía más baja que la luz visible, la cual llamamos luz infrarroja o radiación infrarroja. Nosotros  la sentimos como ‘calor’ en la piel, semejante a la radiación invisible del calor de un plato caliente.
La radiación del Sol corre a una velocidad increíble de 300.000 km/s (velocidad luz) por el espacio y recorre una distancia de 150 millones de kilómetros del Sol a la Tierra en aproximadamente 8 minutos.

Cantidad de energía transferida

Las cantidades de energía son medidas en Joules o Julios. El Sol transfiere en cada segundo la cantidad de 1367 J en cada metro cuadrado del diámetro de la Tierra. Esto corresponde a una potencia de 1367 W (vatios o watts) [1 Vatio = 1 Joule por segundo]. Este valor recibe el nombre de "constante solar".

Por dos razones esta energía no alcanza continuamente cada metro cuadrado de la superficie terrestre. Las razones son: 1) la geometría de la Tierra 2) la influencia de la atmósfera.

La superficie terrestre "S" se aproxima a la superficie de una esfera con radio "r" y su área es:
El área que es golpeada verticalmente por el Sol es sólo la sección circular transversal "D" de esta esfera con un  área de: 
La Geometría de la Tierra: La Tierra no es un disco frente al Sol sino una esfera. Por lo tanto, el sol no irradia a la Tierra verticalmente sino que en la mayoría de las regiones lo hace con un cierto ángulo. Cuando es de noche de un lado de la Tierra, no hay irradiación alguna. La sección transversal de una esfera, que es golpeada verticalmente por el sol, es sólo un cuarto de su superficie. Por lo tanto alcanza sólo ¼ x 1367 Vatios = 342 vatios por metro cuadrado de la atmósfera superior.
La energía  transferida por los rayos paralelos del sol a la Tierra es la misma, pero dependiendo del ángulo de incidencia, el área impactada es diferente. Así mismo ocurre con la atmósfera, de tal manera que los rayos llegan a ser más débiles mientras más grande sea la porción de atmósfera.
© GNU Licence Wikipedia, modificada

La luz del sol no puede pasar la atmósfera y alcanzar la superficie de la Tierra sin trabas. Las nubes, el hielo y áreas nevadas lo reflejan. Los gases y el polvo en el aire toman la energía y remiten en todas direcciones, también de regreso al espacio. Al final, aproximadamente 168 Vatio de un promedio de 342 Vatio son absorbidos por la Tierra.
Pero, en comparación, sólo cerca de 0.06 W/m2 viene como radiación térmica del interior de la tierra. Esto es más de 2000 veces menos que el poder del Sol.

La distribución de la energía

Sabemos que el clima cercano al ecuador es más cálido que en el Polo Norte o en el Polo Sur. Nosotros también sabemos que en todas partes de la Tierra el verano es más cálido que el invierno. La energía del Sol no se esparce uniformemente en todas las regiones del mundo. También cambia con la temporada, debido a que el eje de la Tierra esta inclinado a un ángulo de aproximadamente 23,3 °.

miércoles, 11 de octubre de 2017

Problemas de calorimetría

1) Calcular la cantidad de calor necesaria en Kcal y J que deben ceder 150 g de agua que se encuentran a 100 ºC para disminuir su temperatura hasta 20 ºC.   Datos: 1 cal = 4,18 J  ;  Ce del agua = 1 cal/g.ºC

2) ¿Qué cantidad de calor es necesario suministrar a una barra de aluminio de 300 g para que su temperatura suba 100 ºC ? Dato: Ce del aluminio = 0,212 cal/g.ºC


3) ¿Cuál será el aumento de temperatura de una barra de bronce de 3 Kg si se coloca en un horno industrial que le suministra 30 Kcal? Dato: Ce del bronce = 0,092 cal/g.ºC
4) ¿De qué material será un cuerpo de 200 g de masa, sabiendo que para elevar su temperatura 100 ºC se necesitan 1200 cal? Consultar tabla de calor específico.


5) El sistema de refrigeración de un camión contiene 22 litros de agua. ¿Cuál es la variación de la temperatura del agua si se debe extraer una cantidad de energía en forma de calor de 978000 J? Dato: 1 J = 0,24 cal

domingo, 8 de octubre de 2017

Cantidad de calor

La experiencia ha demostrado que la cantidad de calor tomada (o cedida) por un cuerpo es directamente proporcional a su masa y al aumento (o disminución) de temperatura que experimenta.
La expresión matemática de esta relación es la ecuación calorimétrica:
Q = m·Ce·(Tf-Ti)
En palabras más simples, la cantidad de calor recibida o cedida por un cuerpo se calcula mediante esta fórmula, en la cual m es la masa, Ce es el calor específico, Ti es la temperatura inicial y Tf la temperatura final.  Por lo tanto Tf – Ti = ΔT (variación de temperatura).
Si Ti > Tf el cuerpo cede calor Q < 0
Si Ti < Tf el cuerpo recibe calor Q > 0
Se define calor específico (Ce) como la cantidad de calor que hay que proporcionar a un gramo de sustancia para que eleve su temperatura en un grado centígrado. En el caso particular del agua Ce vale 1 cal/gº C ó 4,186 J. El calor específico puede deducirse de la ecuación anterior. Si se despeja Ce de ella resulta:
Calor específico, temperatura de fusión y temperatura de ebullición de algunas sustancias
Problema:
Calcular la cantidad de calor necesario para elevar la temperatura a 10 Kg de cobre de 25 °C a 125 °C

miércoles, 27 de septiembre de 2017

Aplicaciones de las escalas termométricas

  1. Un periodista del estado de Georgia en EEUU anuncia el pronóstico del día, y dice que la temperatura máxima será de 70 ºF. ¿Aconsejará a los habitantes llevar abrigo?
  2. La temperatura normal de las gallinas oscila entre 40,6 y 41,9 º C., ¿cuál es esa temperatura medida en ºF?
  3. La temperatura ambiente del aula es 18 °C. ¿Cuál será la temperatura en la escala Kelvin?

Escalas termométricas

En la vida cotidiana resulta útil conocer la temperatura del aire, ya que brinda información sobre el estado del tiempo y las condiciones climáticas. También puede resultar útil controlar la temperatura corporal en los enfermos, o la temperatura de conservación de algunos alimentos.
Para medir la temperatura es necesario disponer de un instrumento llamado termómetro.
Los termómetros pueden tener distintas escalas que permiten asignar un número a cada estado térmico. Para calibrar un termómetro se deben considerar dos puntos de referencia, llamados puntos fijos. Algunas variantes en su determinación son las siguientes.

Escala Fahrenheit

A principios del siglo XVIII, Gabriel Fahrenheit (1686-1736) creó la escala que lleva su nombre. El punto fijo inferior de esta escala corresponde a la temperatura de fusión de una solución de cloruro de amonio en agua, a la que asignó el valor 0 ºF. El punto fijo superior corresponde a la temperatura de agua en ebullición a la que asignó el valor 212 ºF. Un termómetro así graduado indica que la temperatura de fusión del hielo a presión normal es 32 ºF. Esta escala es muy utilizada en algunos países, como los Estados Unidos.

Escala Celsius

En 1743, Anders Celsius (1701-1744) creó la escala Celsius. En esta escala se asignó al punto de fusión del hielo a una temperatura de 0 ºC y al punto de ebullición del agua 100 ºC, ambos valores a presión normal. Es utilizada en la mayoría de los países de Europa y América latina.
Como en la escala Fahrenheit el punto de fusión del hielo corresponde a 32 ºF, se tiene que 0 ºC corresponde a 32ºF. Con lo cual, mientras en la escala Celsius el intervalo entre los puntos de fusión y ebullición del agua queda divido en 100 partes iguales, la escala Fahrenheit divide al mismo intervalo en 180 partes iguales (de 32ºF a 212ºF).

Escala Kelvin

Fue nombrada así en honor a William Thomson, el que más tarde sería Lord Kelvin (1824-1907), quien a los 24 años creó una escala termométrica de gran uso en muchos países del mundo. Esta escala se calibra en términos de la energía de los cuerpos, de modo tal que existe un límite de la temperatura mínima posible, que corresponde al menor estado térmico que puede alcanzar la materia. A este límite se lo denominó 0 K o cero absoluto.
Las unidades de la escala Kelvin se dimensionan de igual forma que los grados de la escala Celsius; esto significa que una variación de temperatura de diez grados Kelvin es lo mismo que una variación de 10 grados Celsius. Luego, sobre la base de la escala Celsius se asigna 273,15 K a la temperatura de fusión del hielo, es decir 0 ºC, y 373,15 K para la temperatura de ebullición del agua, o sea 100 ºC. De este modo el 0 K coincide con el –273,15 ºC.
Esta escala es la única utilizada por los científicos para desarrollos teóricos y es la que se toma como la unidad de temperatura en el Sistema Internacional de Unidades (SI) y en el Sistema Métrico Legal Argentino (SIMELA). Se representa con la letra K, y no ºK.